Thesis Code: 21001

 Thesis Type: Global Navigation Satellite System (GNSS), Computer Science, Cybersecurity

Research Area: Cybersecurity of systems based on GNSS data


  • Knowledge of GNSS, GNSS data and GNSS receivers
  • Knowledge of Linux Operating System
  • Interest in Cybersecurity and Trust technologies
  • Curiosity-driven mindset


GNSS technologies has been constantly growing in the last years and GNSS receivers have been adopted in the most different fields of applications such as: road tolling, secure autonomous driving, location-based services, synchronization of networks (e.g. telco, energy grids, etc.), financial transactions. GNSS receivers and connected devices integrating and making use of these receivers are all vulnerable to intentional attacks exploiting different attack vectors (e.g. GNSS signals, operating systems & software and communication networks). The feasible chance to exploit vulnerabilities and intentionally modify GNSS data create incentives for the attackers that want to impair or fool any systems that has a dependency in GNSS. Every system that make use of GNSS data, either when they are estimated from the satellite constellation or received from a network peer must solve/answer the same question: can I trust the GNSS data and take safe decisions and operate in accordance to them? There is, therefore, a pressing need to analyze threats and vulnerabilities along the whole chain (i.e. from satellite to system and user on earth) to designs, develop and test solution to digitally Trust in GNSS data.

The thesis will be structured as follows:

  • analysis of threats and vulnerabilities of a reference system that makes use of GNSS data;
  • state-of-the-art analysis of cyber technologies to “Trust-by-verify” GNSS data;
  • design and development of a simple proof-of-concept (PoC);
  • in-lab testing;
  • drawing conclusions and formulating a research roadmap.


Contact: send a resume with attached the list of exams to specifying the thesis code and title.