Thesis Code: 20015

 Thesis Type: Master Thesis for Telecommunication/Electronic Engineering, Computer Science, Mathematics, Physics or equivalent

 Research Area: Advanced Computing and Applications


  • MS students in Telecommunication Engineering, Electronic Engineering, Computer Science or equivalent
  • Experience with main programming languages (Matlab /Fortran/C/C++)
  • Basic knowledge of EM fields
  • Basic knowledge of linear algebra and linear systems
  • Experience with Electronic instruments (the thesis will include laboratory activities)

The exhaustive RF end-to-end testing of an antenna can be complex and time consuming. Due to the sampling criteria limit, the measurement time associated with these complex tests becomes easily prohibitive. Advanced strategies for end-to-end test time reduction are very appealing and recently [1,2], an algorithm based on a properly hybridization of measurements and simulations has been proposed, to demonstrate the possibility to perform a radical under sampled field measurement of the Antenna Under Test (AUT), with respect to the conventional Nyquist criteria.


The thesis would like to improve the performance of the algorithm by investigating the possibility to extend the method to other domains (e.g. frequency, space, etc.). 


  1. J. Foged, L. Scialacqua, M. Bandinelli, M. Bercigli, F. Vipiana, G. Giordanengo, M. Sabbadini, and G. Vecchi, “Numerical Model Augmentend RF Test Techniques,” in 6th European Conference on Antennas and Propagation, EuCAP, March 2012.
  2. J. Foged, L. Scialacqua, F. Saccardi, M. Bandinelli, M. Bercigli, G. Guida, F. Vipiana, G. Giordanengo, M. Sabbadini, and G. Vecchi, “Innovative Approach for Satellite Antenna Integration and Test/Verification,” in 34th Symposium of the Antenna Measurement Techniques Association (AMTA), October 2012.

Contact: send a resume with attached the list of exams to specifying the thesis code and title.